Two types of active solar water heating systems

* Direct circulation systems

Pumps circulate household water through the collectors and into the home. They work well in climates where it rarely freezes.

* Indirect circulation systems

Pumps circulate a non-freezing, heat-transfer fluid through the collectors and a heat exchanger. This heats the water that then flows into the home. They are popular in climates prone to freezing temperatures.

Illustration of an active, closed loop solar water heater. A large, flat panel called a flat plate collector is connected to a tank called a solar storage/backup water heater by two pipes. One of these pipes is runs through a cylindrical pump into the bottom of the tank, where it becomes a coil called a double-wall heat exchanger. This coil runs up through the tank and out again to the flat plate collector. Antifreeze fluid runs only through this collector loop. Two pipes run out the top of the water heater tank; one is a cold water supply into the tank, and the other sends hot water to the house.

Passive solar water heating systems are typically less expensive than active systems, but they’re usually not as efficient. However, passive systems can be more reliable and may last longer. There are two basic types of passive systems:

* Integral collector-storage passive systems

These work best in areas where temperatures rarely fall below freezing. They also work well in households with significant daytime and evening hot-water needs.

* Thermosyphon systems

Water flows through the system when warm water rises as cooler water sinks. The collector must be installed below the storage tank so that warm water will rise into the tank. These systems are reliable, but contractors must pay careful attention to the roof design because of the heavy storage tank. They are usually more expensive than integral collector-storage passive systems.

Illustration of a passive, batch solar water heater. Cold water enters a pipe and can either enter a solar storage/backup water heater tank or the batch collector, depending on which bypass valve is opened. If the valve to the batch collector is open, a vertical pipe (which also has a spigot drain valve for cold climates) carries the water up into the batch collector. The batch collector is a large box holding a tank and covered with a glaze that faces the sun. Water is heated in this tank, and another pipe takes the heated water from the batch collector into the solar storage/backup water heater, where it is then carried to the house.

Solar water heating systems almost always require a backup system for cloudy days and times of increased demand. Conventional storage water heaters usually provide backup and may already be part of the solar system package. A backup system may also be part of the solar collector, such as rooftop tanks with thermosyphon systems. Since an integral-collector storage system already stores hot water in addition to collecting solar heat, it may be packaged with a demand (tankless or instantaneous) water heater for backup.

Source: EERE, U.S. Department of Energy

Solar water heaters – also called solar domestic hot water systems

Solar water heaters – also called solar domestic hot water systems – can be a cost-effective way to generate hot water for your home. They can be used in any climate, and the fuel they use – sunshine – is free.

How They Work

Solar water heating systems include storage tanks and solar collectors. There are two types of solar water heating systems: active, which have circulating pumps and controls, and passive, which don’t.

Most solar water heaters require a well-insulated storage tank. Solar storage tanks have an additional outlet and inlet connected to and from the collector. In two-tank systems, the solar water heater preheats water before it enters the conventional water heater. In one-tank systems, the back-up heater is combined with the solar storage in one tank.

Three types of solar collectors are used for residential applications:

* Flat-plate collector

Glazed flat-plate collectors are insulated, weatherproofed boxes that contain a dark absorber plate under one or more glass or plastic (polymer) covers. Unglazed flat-plate collectors—typically used for solar pool heating—have a dark absorber plate, made of metal or polymer, without a cover or enclosure.

* Integral collector-storage systems

Also known as ICS or batch systems, they feature one or more black tanks or tubes in an insulated, glazed box. Cold water first passes through the solar collector, which preheats the water. The water then continues on to the conventional backup water heater, providing a reliable source of hot water. They should be installed only in mild-freeze climates because the outdoor pipes could freeze in severe, cold weather.

* Evacuated-tube solar collectors

They feature parallel rows of transparent glass tubes. Each tube contains a glass outer tube and metal absorber tube attached to a fin. The fin’s coating absorbs solar energy but inhibits radiative heat loss. These collectors are used more frequently for U.S. commercial applications.

Source: EERE, U.S. Department of Energy

Sizing a Solar Water Heating System

Sizing your solar water heating system basically involves determining the total collector area and the storage volume you’ll need to meet 90%–100% of your household’s hot water needs during the summer. Solar system contractors use worksheets and computer programs to help determine system requirements and collector sizing.
Collector Area

Contractors usually follow a guideline of around 20 square feet (2 square meters) of collector area for each of the first two family members. For every additional person, add 8 square feet (0.7 square meters) if you live in the U.S. Sun Belt area or 12–14 square feet if you live in the northern United States.
Storage Volume

A small (50- to 60-gallon) storage tank is usually sufficient for one to two three people. A medium (80-gallon) storage tank works well for three to four people. A large tank is appropriate for four to six people.

For active systems, the size of the solar storage tank increases with the size of the collector—typically 1.5 gallons per square foot of collector. This helps prevent the system from overheating when the demand for hot water is low. In very warm, sunny climates, some experts suggest that the ratio should be increased to as much as 2 gallons of storage to 1 square foot of collector area.

Source: EERE, U.S. Department of Energy

Evaluating Your Site’s Solar Resource for Solar Water Heating

Before you buy and install a solar water heating system, you need to first consider your site’s solar resource. The efficiency and design of a solar water heating system depends on how much of the sun’s energy reaches your building site.

Solar water heating systems use both direct and diffuse solar radiation. Even if you don’t live in a climate that’s warm and sunny most of the time—like the southwestern United States—your site still might have an adequate solar resource. If your building site has unshaded areas and generally faces south, it’s a good candidate for a solar water heating system.

Your local solar system supplier or installer can perform a solar site analysis.

Source: EERE, U.S. Department of Energy