Insulated Window Glazing or Glass

Insulated window glazing refers to windows with two or more panes of glass. They are also called double-glazed, triple-glazed, and—sometimes more generally—storm windows.

To insulate the window, the glass panes are spaced apart and hermetically sealed to form a single-glazed unit with an air space between each pane of glass. The glass layers and the air spaces resist heat flow. As a result, insulated window glazing primarily lowers the U-factor, but it also lowers the solar heat gain coefficient.

Some window manufacturers use spacers—which separate two panes of glass—that conduct heat less readily than others. These spacers can further lower a window’s U-factor.

Other technologies window manufacturers use to improve the energy performance of insulated glazing include these:

* Gas fills
* Low-emissivity coatings.

Source: EERE, U.S. Department of Energy

Low-Emissivity Window Glazing or Glass

Low-emissivity (Low-E) coatings on glazing or glass control heat transfer through windows with insulated glazing. Windows manufactured with Low-E coatings typically cost about 10%–15% more than regular windows, but they reduce energy loss by as much as 30%–50%.

A Low-E coating is a microscopically thin, virtually invisible, metal or metallic oxide layer deposited directly on the surface of one or more of the panes of glass. The Low-E coating reduces the infrared radiation from a warm pane of glass to a cooler pane, thereby lowering the U-factor of the window. Different types of Low-E coatings have been designed to allow for high solar gain, moderate solar gain, or low solar gain. A Low-E coating can also reduce a window’s visible transmittance unless you use one that’s spectrally selective.

To keep the sun’s heat out of the house (for hot climates, east and west-facing windows, and unshaded south-facing windows), the Low-E coating should be applied to the outside pane of glass. If the windows are designed to provide heat energy in the winter and keep heat inside the house (typical of cold climates), the Low-E coating should be applied to the inside pane of glass.

Window manufacturers apply Low-E coatings in either soft or hard coats. Soft Low-E coatings degrade when exposed to air and moisture, are easily damaged, and have a limited shelf life. Therefore, manufacturers carefully apply them in insulated multiple-pane windows. Hard Low-E coatings, on the other hand, are more durable and can be used in add-on (retrofit) applications. The energy performance of hard-coat, Low-E films is slightly poorer than that of soft-coat films.

Although Low-E coatings are usually applied during manufacturing, some are available for do-it-yourselfers. These films are inexpensive compared to total window replacements, last 10–15 years without peeling, save energy, reduce fabric fading, and increase comfort.

Source: EERE, U.S. Department of Energy

Passive Solar Window Design in Cooling-Dominated Climates

In cooling climates, particularly effective strategies include preferential use of north-facing windows and generously shaded south-facing windows. Windows with low SHGCs are more effective at reducing cooling loads. The following types of glazing help reduce solar heat gain, lowering a window’s SHGC:

* Low-E
* Tinted
* Reflective
* Spectrally Selective.

Most of these glazing types, except for spectrally selective, also help lower a window’s VT.

Source: EERE, U.S. Department of Energy

Passive Solar Window Design in Heating-Dominated Climates

In heating-dominated climates, major glazing areas should generally face south to collect solar heat during the winter when the sun is low in the sky. In the summer, when the sun is high overhead, overhangs or other shading devices (e.g., awnings) prevent excessive heat gain.

To be effective, south-facing windows usually must have a solar heat gain coefficient (SHGC) of greater than 0.6 to maximize solar heat gain during the winter, a U-factor of 0.35 or less to reduce conductive heat transfer, and a high visible transmittance (VT) for good visible light transfer.

Windows on east-, west-, and north-facing walls are reduced in heating climates, while still allowing for adequate daylight. East- and west-facing windows are limited because it is difficult to effectively control the heat and penetrating rays of the sun when it is low in the sky. These windows should have a low SHGC and/or be shaded. North-facing windows collect little solar heat, so they are used just to provide useful lighting.

Low-emissivity window glazing can help control solar heat gain and loss in heating climates.

Source: EERE, U.S. Department of Energy

Passive Solar Window Design

Windows are an important element in passive solar home designs, which can reduce heating, cooling, and lighting needs in a house.

Passive solar design strategies vary by building location and regional climate. The basic techniques involving windows remain the same—select, orient, and size glass to control solar heat gain along with different glazings usually selected for different sides of the house (exposures or orientations). For most U.S. climates, you want to maximize solar heat gain in winter and minimize it in summer.

Source: EERE, U.S. Department of Energy

Five Elements of Passive Solar Home Design

The following five elements constitute a complete passive solar home design. Each performs a separate function, but all five must work together for the design to be successful.

Aperture (Collector)

The large glass (window) area through which sunlight enters the building. Typically, the aperture(s) should face within 30 degrees of true south and should not be shaded by other buildings or trees from 9 a.m. to 3 p.m. each day during the heating season.

Absorber

The hard, darkened surface of the storage element. This surface—which could be that of a masonry wall, floor, or partition (phase change material), or that of a water container—sits in the direct path of sunlight. Sunlight hits the surface and is absorbed as heat.

Thermal mass

The materials that retain or store the heat produced by sunlight. The difference between the absorber and thermal mass, although they often form the same wall or floor, is that the absorber is an exposed surface whereas thermal mass is the material below or behind that surface.

Distribution

The method by which solar heat circulates from the collection and storage points to different areas of the house. A strictly passive design will use the three natural heat transfer modes—conduction, convection, and radiation—exclusively. In some applications, however, fans, ducts, and blowers may help with the distribution of heat through the house.

Control

Roof overhangs can be used to shade the aperture area during summer months. Other elements that control under- and/or overheating include electronic sensing devices, such as a differential thermostat that signals a fan to turn on; operable vents and dampers that allow or restrict heat flow; low-emissivity blinds; and awnings.

Source: EERE, U.S. Department of Energy

How a Passive Solar Home Design Works

To understand how a passive solar home design works, you need to understand how heat moves and how it can be stored.

As a fundamental law, heat moves from warmer materials to cooler ones until there is no longer a temperature difference between the two. To distribute heat throughout the living space, a passive solar home design makes use of this law through the following heat-movement and heat-storage mechanisms:

  • Conduction

    Conduction is the way heat moves through materials, traveling from molecule to molecule. Heat causes molecules close to the heat source to vibrate vigorously, and these vibrations spread to neighboring molecules, thus transferring heat energy. For example, a spoon placed into a hot cup of coffee conducts heat through its handle and into the hand that grasps it.

  • Convection

    Convection is the way heat circulates through liquids and gases. Lighter, warmer fluid rises, and cooler, denser fluid sinks. For instance, warm air rises because it is lighter than cold air, which sinks. This is why warmer air accumulates on the second floor of a house, while the basement stays cool. Some passive solar homes use air convection to carry solar heat from a south wall into the building’s interior.

  • Radiation

    Radiant heat moves through the air from warmer objects to cooler ones. There are two types of radiation important to passive solar design: solar radiation and infrared radiation. When radiation strikes an object, it is absorbed, reflected, or transmitted, depending on certain properties of that object.

    Opaque objects absorb 40%–95% of incoming solar radiation from the sun, depending on their color—darker colors typically absorb a greater percentage than lighter colors. This is why solar-absorber surfaces tend to be dark colored. Bright-white materials or objects reflect 80%–98% of incoming solar energy.

    Inside a home, infrared radiation occurs when warmed surfaces radiate heat towards cooler surfaces. For example, your body can radiate infrared heat to a cold surface, possibly causing you discomfort. These surfaces can include walls, windows, or ceilings in the home.

    Clear glass transmits 80%–90% of solar radiation, absorbing or reflecting only 10%–20%. After solar radiation is transmitted through the glass and absorbed by the home, it is radiated again from the interior surfaces as infrared radiation. Although glass allows solar radiation to pass through, it absorbs the infrared radiation. The glass then radiates part of that heat back to the home’s interior. In this way, glass traps solar heat entering the home.

  • Thermal capacitance

    Thermal capacitance refers to the ability of materials to store heat. Thermal mass refers to the materials that store heat. Thermal mass stores heat by changing its temperature, which can be done by storing heat from a warm room or by converting direct solar radiation into heat. The more thermal mass, the more heat can be stored for each degree rise in temperature. Masonry materials, like concrete, stones, brick, and tile, are commonly used as thermal mass in passive solar homes. Water also has been successfully used.

Source: EERE, U.S. Department of Energy

What is Passive Solar Home Design?

Your home’s windows, walls, and floors can be designed to collect, store, and distribute solar energy in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design or climatic design. Unlike active solar heating systems, passive solar design doesn’t involve the use of mechanical and electrical devices, such as pumps, fans, or electrical controls to move the solar heat.

Passive solar homes range from those heated almost entirely by the sun to those with south-facing windows that provide some fraction of the heating load. The difference between a passive solar home and a conventional home is design. The key is designing a passive solar home to best take advantage of your local climate. For more information, see how a passive solar home design works.

You can apply passive solar design techniques most easily when designing a new home. However, existing buildings can be adapted or “retrofitted” to passively collect and store solar heat.

To design a completely passive solar home, you need to incorporate what are considered the five elements of passive solar design. Other design elements include:

* Window location and glazing type
* Insulation and air sealing
* Auxiliary heating and cooling systems, if needed.

These design elements can be applied using one or more of the following passive solar design techniques:

* Direct gain
* Indirect gain (Trombe wall)
* Isolated gain (Sunspace).

When incorporating these design elements and techniques, you want to design for summer comfort, not just for winter heating.

Your home’s landscaping can also be incorporated into your passive solar design.

Source: EERE, U.S. Department of Energy